TOC 8.4 Trigonometry

EVEN PAGE

EQ: Can you find trigonometric ratios and use them to find side lengths and angle measures in right triangles?

How are you doing? Write answer next to Essential Question

- 1. I don't understand the material
- 2. I understand a little.
- 3. I understand this material.
- 4. I could teach this to someone

Summary: At least 3 sentences...

Words	Sym	bols
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the sine of $\angle A$ (written sin A) is the ratio of the length of the leg opposite $\angle A$ (opp) to the length of the hypotenuse (hyp).	$\sin A = \frac{\text{opp}}{\text{hyp}} \text{ or } \frac{a}{c}$ $\sin B = \frac{\text{opp}}{\text{hyp}} \text{ or } \frac{b}{c}$	A
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the cosine of $\angle A$ (written cos A) is the ratio of the length of the leg adjacent $\angle A$ (adj) to the length of the hypotenuse (hyp).	$\cos A = \frac{\text{adj}}{\text{hyp}} \text{ or } \frac{b}{c}$ $\cos B = \frac{\text{adj}}{\text{hyp}} \text{ or } \frac{a}{c}$	b
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the tangent of $\angle A$ (written tan A) is the ratio of the length of the leg opposite $\angle A$ (opp) to the length of the leg adjacent $\angle A$ (adj).	$\tan A = \frac{\text{opp}}{\text{adj}} \text{ or } \frac{a}{b}$ $\tan B = \frac{\text{opp}}{\text{adj}} \text{ or } \frac{b}{a}$	C a B

₩ KeyCo	oncept Inverse Trigonometric Ratios
Words	If $\angle A$ is an acute angle and the sine of A is x , then the inverse sine of x is the measure of $\angle A$.
Symbols	If $\sin A = x$, then $\sin^{-1} x = m \angle A$.
Words	If $\angle A$ is an acute angle and the cosine of A is x , then the inverse cosine of x is the measure of $\angle A$.
Symbols	If $\cos A = x$, then $\cos^{-1} x = m \angle A$.
Words	If $\angle A$ is an acute angle and the tangent of A is x , then the inverse tangent of x is the measure of $\angle A$.
Symbols	If $\tan A = x$, then $\tan^{-1} x = m \angle A$.

2. Use a special right triangle to express the cosine of 60° as a fraction and as a decimal to the nearest hundredth.

odd page

KEY TERMS

<u>Trigonometry</u> (comes from Greek words trigon meaning triangle and metron meaning measure) -uses relationship with triangle measurement.

<u>Trigonometric Ratio</u> - A ratio of the lengths of two sides of a right triangle.

<u>Solving a Right Triangle</u> - Finding the unknown angles and side measures of a right triangle (need to know 2 side lengths or one side length and one acute angle measure).

Notice: $\tan 30^{\circ} \approx 0.58$ and $\tan^{-1} 0.58 \approx 30^{\circ}$ (try these on your calculator)

SOH-CAH-TOA

المال المال

StudyTip

Memorizing Trigonometric Ratios

mnemonic device for learning the ratios for sine, cosine, and tangent using the first letter of each word in the ratios.

$$\sin A = \frac{\text{opp}}{\text{hyp}}$$

$$\cos A = \frac{\text{adj}}{\text{hyp}}$$

$$\tan A = \frac{\text{opp}}{\text{adj}}$$

ReadingMath

Inverse Trigonometric Ratios

The expression $\sin^{-1} x$ is read *the inverse sine* of x and is interpreted as the angle with sine x. Be careful not to confuse this notation with the notation for negative exponents— $\sin^{-1} x \neq \frac{1}{\sin x}$.

 $f^{-1}(x)$.

StudyTip

Graphing Calculator
The second functions
of the SIN, COS,
and TAN keys are
usually the inverses.

Watch Out!

Approximation If using calculated measures to find other measures in a right triangle, be careful not to round values until the last step. So in the following equation, use $\tan^{-1}\frac{9}{5}$ instead of its approximate value, 61°.

$$XY = \frac{9}{\sin X}$$

$$= \frac{9}{\sin \left(\tan^{-1}\frac{9}{5}\right)}$$

$$\approx 10.3$$

Watch Out!

Rounding When finding missing measures of a triangle, the angles may not add to 180° because of rounding errors.

	sed to find Longths of Sides
Words	Symbols
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the sine of $\angle A$ (written sin A) is the ratio of the length of the leg opposite $\angle A$ (opp) to the length of the hypotenuse (hyp).	$\sin A = \frac{\text{opp}}{\text{hyp}} \text{ or } \frac{a}{c}$ $\sin B = \frac{\text{opp}}{\text{hyp}} \text{ or } \frac{b}{c}$
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the cosine of $\angle A$ (written cos \underline{A}) is the ratio of the length of the leg adjacent $\angle A$ (adj) to the length of the hypotenuse (hyp).	$\cos A = \frac{\text{adj}}{\text{hyp}} \text{ or } \frac{b}{c}$ $\cos B = \frac{\text{adj}}{\text{hyp}} \text{ or } \frac{a}{c}$
If $\triangle ABC$ is a right triangle with acute $\angle A$, then the tangent of $\angle A$ (written tan A) is the ratio of the length of the leg opposite $\angle A$ (opp) to the length of the leg adjacent $\angle A$ (adj).	$\tan A = \frac{\text{opp}}{\text{adj}} \text{ or } \frac{a}{b}$ $\tan B = \frac{\text{opp}}{\text{adj}} \text{ or } \frac{b}{a}$

Sentence	Frame:	Learning	SOHCAF	HOA
		•	_ >	

The	of an angle is the ratio of	O f
	over	

B. Express cos *L* as a fraction and as a decimal to the nearest hundredth.

C. Express tan *L* as a fraction and as a decimal to the nearest hundredth.

- -

D. Express sin *N* as a fraction and as a decimal to the nearest hundredth.

E. Express cos *N* as a fraction and as a decimal to the nearest hundredth.

F. Express tan *N* as a fraction and as a decimal to the nearest hundredth.

Now do worksheet:

"HW4W 2 sin, cos, and tan"