The final way to transform the graph of a sinusoidal function is through a vertical translation or **vertical shift**. Recall from Lesson 1-5 that the graph of $y = f(x) + \underline{d}$ is the graph of y = f(x)translated or *shifted* |d| units up if d > 0 and |d| units down if d < 0. The vertical shift is the average of the maximum and minimum values of the function.

The parent functions $y = \sin x$ and $y = \cos x$ oscillate about the *x*-axis. After a vertical shift, a new horizontal axis known as the midline becomes the reference line or equilibrium point about which the graph oscillates. For example, the midline of $y = \sin x + 1$ is y = 1, as shown.

The characteristics of transformations of the parent functions $y = \sin x$ and $y = \cos x$ are summarized below.

Applications of Sinusoidal Functions Many real-world situations that exhibit periodic behavior over time can be modeled by transformations of $y = \sin x$ or $y = \cos x$.

Real-World EXAMPLE 7

Modeling Data Using a Sinusoidal Function

Handout

METEOROLOGY The tides in the Bay of Fundy, in New Brunswick, Canada, have extreme highs and lows everyday. The table shows the high tides for one lunar month. Write a trigonometric function that models the height of the tides as a function of time x, where x = 1 represents the first day of the month.

Day	High Tide (ft)	Day	High Tide (ft)		
1	25.9	16	27.7		
2	25.8	17	28.0		
3	25.6	18	27.9		
4	25.3	19	27.5		
5	25.1	20	26.8		
6	24.7	21	26.0		
7	24.3	22	25.1		
8	23.9	23	24.6		
9	23.5	24	24.3		
10	23.3	25	24.2		
- 11	23.6	26	24.3		
12	24.3	27	24.8		
13	25.2	28	25.0		
14	26.1	29	25.3		
15	27.0	30	25.5		

Denterdata in L, and Lz Denterdata in L, and L,

Real-World EXAMPLE 7

Modeling Data Using a Sinusoidal Function

Handout

METEOROLOGY The tides in the Bay of Fundy, in New Brunswick, Canada, have extreme highs and lows everyday. The table shows the high tides for one lunar month. Write a trigonometric function that models the height of the tides as a function of time x, where x = 1 represents the first day of the month.

Day	High Tide (ft)	Day	High Tide (ft)	I have the second
1	25.9	16	27.7	a- 19mar guint - 129-23.31-6.35-a
2	25.8	17	28.0	
3	25.6	18	27.9	,
4	25.3	19	27.5	
5	25.1	20	26.8	hserosine ., \ - 2 T
6	24.7	21	26.0	Lavior \
7	24.3	22	25.1 24.6	geriod= 2(17-14) (5)
8	23.9	23	24.6	
9 10	23.5 23.3	25	24.3	
11	23.6	26	24.3	
12	24.3	27	24.8	1 4 Lac 1 Lt 1 1 - 2 th
13	25.2	28	25.0	すべいくろんロー 101三 元
14	26.1	29	25.3	
15	27.0	30	25.5	$ \sim 1/\sqrt{2}$
Γ		(17,	255	$\mathcal{L}(\mathcal{A})$
į		(1. 4.	mar) phat
[و ^{مو} " ه	(tonx)	1 / di. A - 1/1 1 40 6x+ 1 ~16
000		_) \\HT \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
00000			"00000°	Γ / Γ
 	°		-000	$(-\pi)7 = -\frac{c}{c}(-\pi)$ 19+73.3
ŀ	()	7		
1	(201)	٦'		1 \ 7 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
[v .				\ ' / \ \ \ \ \
^	hia J	~ 10		
	1.			(-1) [- > - (-)
				(-1111 = c) $(A = 25.65)$
			1	
	1		- 1	
	4-	Q (-x <	V / TC) - + 4
	-	-/(・Vント	D \ \C\ \ \\
			`	
	L - 1			
	4)) `) (1)	
) '	\ · / /		
				′ / 📑 🤼 📆
				-
				L
	り= り=?	۹(زر)	.) 2 v 5 (12	

EXAMPLE 1 Guided Practice

Describe how the graphs of $f(x) = \cos x$ and $g(x) = 5 \cos x$ are related.

- A. The graph of g(x) is the graph of f(x) compressed horizontally.
- B. The graph of g(x) is the graph of f(x) compressed vertically.
- C. The graph of g(x) is the graph of f(x) expanded horizontally.
- D. The graph of g(x) is the graph of f(x) expanded vertically.

Describe how the graphs of $f(x) = \cos x$ and $g(x) = -6 \cos x$ are related.

- A. The graph of g(x) is the graph of f(x) expanded horizontally and then reflected in the y-axis.
- B. The graph of g(x) is the graph of f(x) expanded vertically and then reflected in the x-axis.
- C. The graph of g(x) is the graph of f(x) expanded horizontally and then reflected in the x-axis.
- D. The graph of g(x) is the graph of f(x) expanded vertically and then reflected in the y-axis.

EXAMPLE 3 Guided Practice

Describe how the graphs of $f(x) = \sin x$ and $g(x) = \sin 4x$ are related.

- A. The graph of g(x) is the graph of f(x) expanded vertically.
- B. The graph of g(x) is the graph of f(x) expanded horizontally.
- C. The graph of g(x) is the graph of f(x) compressed vertically.
- D. The graph of g(x) is the graph of f(x) compressed horizontally.

MUSIC In the equal tempered scale, F sharp has a frequency of 740 hertz. Write an equation for a sine function that can be used to model the initial behavior of the sound wave associated with F sharp having an amplitude of 0.2.

- A. $y = 0.2 \sin 1480\pi t$
- B. $y = 0.2 \sin 740\pi t$
- C. $y = 0.4 \sin 370\pi t$
- D. $y = 0.1 \sin 74\pi t$

EXAMPLE 5

State the amplitude, period, frequency, and phase

shift of
$$y = 4 \cos\left(\frac{x}{3} + \frac{\pi}{6}\right)$$
.

- A. amplitude: 4, period: $\frac{3}{2\pi}$, frequency: $\frac{2\pi}{3}$, phase shift: $-\frac{\pi}{6}$ B. amplitude: $\frac{1}{4}$, period: 3, frequency: $\frac{1}{3}$, phase shift: $-\frac{\pi}{18}$ C. amplitude: 4, period: 6π , frequency: $\frac{1}{6\pi}$, phase shift: $-\frac{\pi}{2}$ D. amplitude: -4, period: $\frac{2\pi}{3}$, frequency: $\frac{3}{2\pi}$, phase shift: $-\frac{\pi}{2}$

- amplitude: 3, period: $\frac{\pi}{4}$, frequency: $\frac{4}{\pi}$, phase shift: $-\frac{\pi}{8}$, vertical shift: 2
- B. amplitude: –3, period: $\frac{\pi}{2}$, frequency: $\frac{2}{\pi}$, phase shift: $-\frac{\pi}{2}$, vertical shift: –2
- C. amplitude: 3, period: $\frac{\pi}{2}$, frequency: $\frac{2}{\pi}$ phase shift: $-\frac{\pi}{4}$, vertical shift: 2
- D. amplitude: 3, period: $\frac{\pi}{2}$, frequency: $\frac{2}{\pi}$, phase shift: $-\frac{\pi}{8}$, vertical shift: -2

Real-World EXAMPLE 7 Guided Practice

TEMPERATURES The table shows the average monthly high temperatures for Chicago. Write a function that models the high temperatures using x = 1 to represent January.

			Mar									
Temp. (°)	32	38	47	59	70	80	84	83	76	64	49	37

$$A. \quad y = 26\cos\left(\frac{\pi}{7}x - \frac{\pi}{7}\right) + 58$$

B.
$$y = 26\cos\left(\frac{\pi}{6}x - \frac{7\pi}{6}\right) + 58$$

$$\mathbf{C.} \quad y = 52\cos\left(\frac{\pi}{6}x - \pi\right) + 26$$

D.
$$y = 23\cos\left(\frac{\pi}{6}x - \frac{7\pi}{6}\right) + 61$$

EXAMPLE 1 Guided Practice

Describe how the graphs of $f(x) = \cos x$ and $g(x) = 5 \cos x$ are related.

- A. The graph of g(x) is the graph of f(x) compressed horizontally.
- B. The graph of g(x) is the graph of f(x) compressed vertically.
- C. The graph of g(x) is the graph of f(x) expanded horizontally.
- D. The graph of g(x) is the graph of f(x) expanded vertically.

EXAMPLE 2

Describe how the graphs of $f(x) = \cos x$ and $g(x) = -6 \cos x$ are related.

- A. The graph of g(x) is the graph of f(x) expanded horizontally and then reflected in the y-axis.
- B. The graph of g(x) is the graph of f(x) expanded vertically and then reflected in the x-axis.
- C. The graph of g(x) is the graph of f(x) expanded horizontally and then reflected in the x-axis.
- D. The graph of g(x) is the graph of f(x) expanded vertically and then reflected in the y-axis.

f(x)=cosx
g(x)=-6cosx
expand
reflect vertically

EXAMPLE 3

Describe how the graphs of $f(x) = \sin x$ and $g(x) = \sin 4x$ are related.

- A. The graph of g(x) is the graph of f(x) expanded vertically.
- B. The graph of g(x) is the graph of f(x) expanded horizontally.
- C. The graph of g(x) is the graph of f(x) compressed vertically.
- The graph of g(x) is the graph of f(x) compressed horizontally.

D f(x):sinx reviol 2n $g(x) = \sin 4x$ $rerigh = \frac{11}{4}$

Real-World EXAMPLE 4

MUSIC In the equal tempered scale, F sharp has a frequency of 740 hertz. Write an equation for a sine function that can be used to model the initial behavior of the sound wave associated with F sharp having an amplitude of 0.2.

 $y = 0.2 \sin 1480\pi t$

B. $y = 0.2 \sin 740\pi t$

C. $y = 0.4 \sin 370\pi t$

D. $y = 0.1 \sin 74\pi t$

y= asinbt a=.2 Freq=740 perioh= F 151: 740 161=14807 b==14807 y=.2sin14807 y=.2sin14807 t

EXAMPLE 5 Guided Practice

- amplitude: 4, period: 6π , frequency: $\frac{3}{6\pi}$, phase shift: $-\frac{\pi}{2}$ D. amplitude: -4, period: $\frac{2\pi}{3}$, frequency: $\frac{3}{2\pi}$, phase shift: $-\frac{\pi}{2}$

State the amplitude, period, frequency, and phase shift of
$$y = 4\cos\left(\frac{x}{3} + \frac{\pi}{6}\right)$$
.

A. amplitude: 4, period: $\frac{3}{2\pi}$, frequency: $\frac{2\pi}{3}$, phase shift: $-\frac{\pi}{6}$

B. amplitude: $\frac{1}{4}$, period: 3, frequency: $\frac{1}{3}$, phase shift: $-\frac{\pi}{18}$

C. amplitude: 4, period: $\frac{1}{6\pi}$, phase shift: $-\frac{\pi}{2}$

State the amplitude, period, frequency, phase shift, and vertical shift of $y = 3\sin\left(4x + \frac{\pi}{2}\right) - 2$

A. amplitude: 3, period: $\frac{\pi}{4}$, frequency: $\frac{4}{\pi}$, phase shift: $-\frac{\pi}{8}$, vertical shift: 2

B. amplitude: -3, period: $\frac{\pi}{2}$, frequency: $\frac{2}{\pi}$, phase shift: $-\frac{\pi}{2}$, pariod: $\frac{\pi}{4}$, frequency: $\frac{2}{\pi}$ phase shift: $-\frac{\pi}{4}$, requestical shift: 2

C. amplitude: 3, period: $\frac{\pi}{2}$, frequency: $\frac{2}{\pi}$ phase shift: $-\frac{\pi}{4}$, requestical shift: 2

D. amplitude: 3, period: $\frac{\pi}{2}$, frequency: $\frac{2}{\pi}$, phase shift: $-\frac{\pi}{8}$, requestical shift: $-\frac{\pi}{8}$, requestical shift: $-\frac{\pi}{8}$.

4-4	Grap	hing	Sine	&	Cosine	Fund	ctions
-----	------	------	------	---	--------	------	--------

EVEN PAGE

EQ: Can you graph transformations of the sine and cosine functions and use sinusoidal functions to solve problems?

How are you doing? Write answer next to Essential Question

- 1. I don't understand the material
- 2. I understand a little.
- 3. I understand this material.
- 4. I could teach this to someone

Summary: At least 3 sentences...